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A vortex pair in a viscous, incompressible fluid rises vertically toward a deformable 
free surface. The mathematical description of this flow situation is a time-dependent 
nonlinear free-surface problem that has been solved numerically for a two- 
dimensional laminar flow with the aid of the NavierStokes equations by using 
boundary-fitted coordinates. For a number of selected flow parameters, results are 
presented on the decay of the primary vortices and their paths, the generation of 
surface vorticity and secondary vortices, the development and final stage of the 
disturbed free surface, and the influence of surface tension. High and low Froude 
numbers represent the two extremes of free-surface yielding and stiffness, 
respectively. For an intermediate Froude number, a special rebounding due to the 
presence of secondary vortices has been observed: the path of the primary vortex 
centre portrays a complete loop. 

1. Introduction 
In recent years the problem of a two-dimensional vortex pair (two counter- 

rotating vortices of equal strength) interacting with a free surface has become of 
interest for a number of reasons. The main attention has been focused on the study 
of wave signatures a t  a water surface caused by the vortex-induced wake of a ship 
(Sarpkaya & Henderson 1984; Willmarth et al. 1989). Another area of interest is the 
investigation of two-dimensional vortex and turbulence structures in which vortex 
pairs can develop spontaneously, travel with great speed, and can carry mass and 
momentum over significant distances. Here the study of the interaction of a vortex 
pair with a free surface would give information on the interference of the free surface 
with the mass and energy transport, the generation of secondary vortices, and even 
the creation of new vortex pairs (Couder & Basdevant 1986; Nguyen Duc & 
Sommeria 1988). 

Barker & Crow (1977) experimented with vortex pairs near a water surface but 
they did not give any information on the disturbance of this surface. Experiments 
explicitly designed for that purpose were performed by Sarpkaya & Henderson 
(1984) with underwater vortices behind a hydrofoil. They observed two types of 
straight, sharp surface depressions which they labelled ‘scars ’ and ‘striations’ 
according to their orientation parallel and perpendicular to the hydrofoil’s 
movement, respectively. Vortex pairs were also produced by counter-rotating flaps 
(Sarpkaya, Elnitsky & Leeker 1988). This method was adopted by Willmarth et al. 
(1989) and Bernal et al. (1989). The latter researchers changed the free-surface 
characteristics through the application of surfactants. 

Most of the theoretical work has been limited to potential flow. Lamb’s (1932) 
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classical solution for two point vortices approaching a flat wall is usually used as a 
benchmark for the paths and speed of the vortices. The influence of a finite core of 
vorticity on the movement of the vortex pair was presented by Saffman (1979). 
Solutions for a linearized free surface were given by Wehausen & Laitone (1960) and 
Kochin, Kibel & Roze (1964) for a vortex near a free surface moving with a 
prescribed speed, whereas in Novikov’s (1981) paper the vortex was free to move. A 
vortex pair approaching a linearized free surface was studied by Marcus (1988). Fish 
(1990) used a modified linearized free-surface theory to investigate the interaction of 
a vortex pair with ambient free-surface waves. Salvesen & von Kerczek (1976) 
treated the problem of a single vortex forced to  move with a constant speed parallel 
to a nonlinear free surface. The latter nonlinear condition was imposed on the 
problem of a vortex pair, rising to a free surface, by Sarpkaya et al. (1988), 
Tryggvason (1988), Marcus (1988), and Telste (1989). 

While the above-cited papers on potential-flow solutions give information on the 
surface disturbance and the paths of the vortices, viscous-flow solutions can provide 
insight into the decay of the vortices, the generation of surface vorticity and 
secondary vortices, and the final stage of the free-surface disturbances. 

Peace & Riley (1983) studied the viscous-flow problem for a plane surface with 
either a non-slip or a perfect-slip condition. They used a viscous inner solution and 
an inviscid outer solution for the initial flow development. After that period, a finite- 
difference scheme for the Navier-Stokes equations was applied. Peace & Riley 
observed (for both non-slip and perfect slip) rebounding, that is, the vortices turning 
away from the free surface after their closest approach. The result for slip is limited 
to low Reynolds numbers according to Orlandi (1990) whose preprint came to the 
authors’ attention during the writing of this paper. Orlandi found for a flat slip 
surface that rebounding diminishes with increasing Reynolds number until it ceases. 

However, the assumption of a flat free surface, which was made by Peace & Riley 
(1983) and Orlandi (1990), does not permit the study of the generation of vorticity 
through the curvature of the free surface, nor can the influence of surface tension be 
investigated. If the free surface does not move or changes only slowly (whereas the 
flow field itself can be unsteady) the surface vorticity is equal to twice the curvature 
times the velocity tangential to the surface (Batchelor 1967). The vorticity at a flat 
surface is thus always zero, but this restriction does not exclude the existence of a 
vorticity flux a t  the flat free surface (which is proportional to the vorticity gradient 
at the surface) and the phenomenon of rebounding. 

Another caveat should be mentioned with regard to  the two-dimensionality of the 
flow model. Sarpkaya (1986) pointed out that, in reality, flow instability and vortex 
breakdown can occur when the vortex pair ascends; and this can occur even when 
the vortex pair is generated at a shallow depth as a recent study by Sarpkaya & 
Suthon (1990) has shown. Such a possibility must be considered in future three- 
dimensional flow studies. 

In  this paper the problem of a viscous vortex pair, approaching vertically a free 
surface with and without surface tension, is addressed. The flow conditions at  the free 
surface are fully nonlinear, and hence the problems due to a curved free surface can 
be tackled. Preliminary results for the low Reynolds numbers of 10 and 50 without 
surface tension were reported by Ohring & Lugt (1989, hereinafter referred to as I). 
For the Reynolds number 50 these results showed qualitatively good agreement with 
potential-flow solutions and available experimental data. 



Interaction of a viscous vortex pair with a free surface 49 

y' t 
-T-+7 Free surface 

I 

i 
r I 

FIGURE 1. Sketch of the flow situation. The dimensional coordinates x', y' are related to the 
dimensionless ones by d, y' = ax, ay. 

2. Description of the flow problem 
A pair of vortices of equal strength K but opposite sign, a distance a apart, in an 

incompressible Newtonian fluid vertically approaches through self-induction an 
initially undisturbed free surface. The flow problem is a transient one, with the fluid 
coming to rest after an infinitely long time. The initially undisturbed free surface is 
placed at  y = 0 in a Cartesian coordinate system x ,  y (figure 1). The corresponding 
velocity components are u and v, respectively. At  the initial depth H ,  where the 
vortex pair is placed, the translational velocity of the pair is V,, which can be 
expressed by K through V, = K / a .  The basic equations of motion are made 
dimensionless by the characteristic length a ,  the time a/V,, and velocity V,. The 
pressurc is related to the dimensionless form P by pV",(P-y/Fr2) with p the density 
of the fluid. In addition to the dimensionless depth S = H / a ,  the flow parameters are 
the Froude number Fr,  the Reynolds number Re, and the Weber number We, defined 
by 

where v and g are the kinematic viscosity of the fluid and the constant of gravity, 
respectively ; u is the coefficient of the surface tension which is considered a constant. 
The time-dependent, laminar flow field is then described by the initial-boundary 
value problem 

(1) 
1 

ut+(u2)z+ (uv), = -P,+&(uzx+u"), 

u x + v y  = 0, (3) 
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with t the dimensionless time. Since the flow field is symmetric about the line x = 0, 
only the half-plane x 2 0 with one vortex at  x = x, and y = yv is considered (figure 
1). The free surface is described by y = Y(x, t )  and is part of the solution. The 
remaining quadrant of infinite extent is made finite for numerical calculations by the 
boundaries x = xL and y = - yL. Then, the boundary conditions are _ _  
y =  Y :  

yt = w-UY,, 

y = -yL: P = 0, u, 0: 

interior, 
obtained by second-order extrapolation along a coordinate line into the 

x = o ,  - y L <  y <  Y:  

x = +x,, - yL c y < 0: P = 0, u, v: 

v x = o ,  u = o ,  P x = 0 ,  

obtained by second-order extrapolation along a coordinate line into the 
interior. 

The following assumptions are made for the initial conditions at  t = 0:  
(i) The free surface is undisturbed. . .  

(ii) A point vortex with strength K a t  the position x = x, = 8 and y = y, = -6 is 
introduced whose flow field is irrotational and is described in the quadrant x 2 0, 
y < 0, except in the vicinity of the vortex centre, by 

where z = x+iy, % =  x-iy, and $ and $ are the potential function and the stream 
function, respectively, made dimensionless by K .  

(iii) The vicinity of the vortex centre with the circular boundary rL is described by 
the Lamb formula for the decaying potential vortex: 

with up = (u2+w2)a and v2 = (x -x , )~  + (y- Y,)~.  For a certain rL, which is determined 
by the permissible error, t ,  can be computed and for the examples in this paper 
tL = 0.25. The numerical computation starts at t = 0. 

(iv) Whereas in irrotational motion the choice of a sufficiently large initial depth 
6 does not affect the solution, the initial depth in a viscous fluid does. The two 
vortices decay and their paths are not parallel as in the inviscid-flow case but diverge 
slightly (Dagan 1989). However, since a decreasing 6 has an effect similar to that of 
an increasing Re, as long as the assumption of an undisturbed surface at t = 0 is not 
violated, the value 6 = - 3 has been chosen to keep the number of computer runs low. 
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FIGURE 2 (a) Mapping of the physical plane (2, y) onto the computational plane ( 6 , ~ )  ; ( b )  the 

'four-colour ' scheme. 

3. Outline of the numerical procedure 
The numerical solution of the initial-boundary-value problem, defined by (1)-( t l ) ,  

is carried out with the aid of a finite-difference technique and boundary-fitted 
coordinates. Details are given in I, and only an outline is given in this paper. Reviews 
on numerical methods for free boundaries by Yeung (1982) and Floryan & 
Rasmussen (1989) also describe other possible methods. 

For the numerical integration of this initial-boundary-value problem it is 
convenient to make a boundary-fitted coordinate transformation. Figure 2 (a)  is a 
schematic drawing of the way in which the physical plane (2, y) is mapped onto the 
computational domain (5,~). Only the coordinate lines which form the boundaries of 
the two regions are drawn. The coordinate lines in physical space are mapped onto 
a uniformly spaced Cartesian mesh with a unit mesh spacing in each coordinate 
direction. 

As the flow field evolves in time, the grid in physical space will move and its 
coordinate lines will be attracted to regions of high flow gradients through the use of 
an adaptive-grid technique (figure 3). However, the Cartesian grid in computational 
space always remains fixed and uniform. This is the major advantage of using a 
mapping. 

For all cases computed, the physical region extends from 2 = 0 to x = 10.8 and 
from y = -6.0 to the free surface. This physical region is mapped onto a com- 
putational space with a Cartesian grid consisting of 209 points in the &coordinate 
direction and 201 points in the 7-coordinate direction. Initially, the physical space 
grid contains 50 uniformly spaced grid points per unit length in the x-coordinate 
direction along the free surface from x = 0 to x = 2.90 with the grid then gradually 
stretched from x = 2.90 to x = 10.8. 

The curvilinear coordinates (E,r) are obtained as solutions of the two elliptic 
partial differential equations with the physical space coordinates (x, y) as indepen- 
dent variables : 
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FIGURE 3. Section of the grid for Re = 100, Fr = 0.8, We = 0, t = 3.475. 

P* and Q* are control functions described in I. Since all calculations are to be done 
in the rectangular computational domain, these two elliptic partial differential 
equations are transformed by interchanging the dependent and independent 
variables. As a result, the physical space coordinates (x, y) are solved in terms of the 
computational space coordinates (6, r )  at each time step (Thompson & Shanks 1977). 

The continuity equation (3) is replaced by an equation with pseudo-compressibility 
for numerically conserving mass a t  each physical time step: 

P,+u,+v, = 0. 

T is the pseudo-time. Mass conservation was excellent for all flow cases computed. 
Altogether five partial differential equations, for u, v, x, y, and P, must be solved 

with the proper boundary conditions. The finite-difference technique for solving 
these equations is briefly described in the following way. All spatial derivatives, 
including one-sided derivatives a t  the boundaries, are replaced by finite-difference 
operators of second order in the computational space. The time-differencing 
procedure is implicit with a certain number of pseudo-time steps for each physical 
time step. The dynamic pressure field P at t = 0 is obtained by solving a Poisson 
equation for P in terms of the initial velocity field, (10) and (11). This is the only time 
a Poisson equation for P is used. 

A ‘four-colour’ scheme (figure 2 b )  is used in the interior of the computational 
space. The use of such a scheme, which can be vectorized, resulted in an order of 
magnitude increase in computer speed on the Cray-XMP 24 on which the 
computations were performed. The four colour scheme consists of obtaining updates 
for P ,  u, v simultaneously a t  all the 0 points, then at  all the points, the x points, 
and the points, in that order. The latest available updates are used in this process. 

The computational cycle for one complete pseudo-time step iteration consists of 
(a)  applying the four-colour scheme to compute updates for x and y followed by 
obtaining the latest updates for y a t  successive points along the symmetry 
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boundary (8) ;  ( b )  applying the four-colour scheme to compute updates for u, v, 
and P; (c)  obtaining updates for P and v a t  successive points along the symmetry 
boundary (8) ;  ( d )  obtaining updates for P, u, v, and Y at successive points along 
the free surface; and ( e )  obtaining updates for u and v at successive points, first 
along the boundary x = x L  from (9) and then along the boundary y = - yL from (7) .  

At the completion of this computational cycle, after the latest updates for x, y, u, 
and v satisfy certain convergence criteria at all points, these updates are the solution 
at the new time level n +  1. If the convergence criteria are not met, cycle (a)-(e)  is 
repeated until they are met. The accuracy of the numerical scheme was checked with 
fine grids in I. 

Computations of the stream function are not presented in this paper. Therefore, 
the streamline pictures show only selected streamlines obtained numerically from 
the velocity fields. These selected streamlines do not represent equally spaced 
incremental values of the mass flux. 

The surface vorticity w, is of interest for the study of secondary vortices and is 
computed with the aid of w = av/ax-au/ay. The well-known formula for w, being 
‘twice the surface curvature times tangential surface velocity ’ is only valid along a 
streamline, that is, for a fixed free surface. The flow field itself can be unsteady. This 
formula is helpful in the discussion of the results in the next section because i t  gives 
good approximate data for a slowly changing free surface. Comparisons of 
computations with the two kinds of formulae for the surface vorticity have shown 
this in I. 

4. Results 
Numerical calculations were performed for Re = 100, Fr = 0.2, 0.4, and 0.8, 

without surface tension, that  is, for We = 0. Also, for Fr = 0.2, surface tension was 
studied for We = 10; for Fr = 0.4, Weber numbers of 1 and 10 were selected. The 
influence of various Reynolds numbers on the flow field was investigated by 
computing a few cases for Re = 10 and 50. I n  these examples the Froude numbers 
were chosen to be Fr = 0.356 and 1.125 to compare the results with those obtained 
from experiments and for inviscid flows. 

Two extreme flow situations are exemplified by the ‘high’ and ‘low’ Froude 
numbers. At high Froude number the free surface can easily be deformed and is not 
a strong barrier against the ascending vortex pair. At low Froude number, in 
contrast, the free surface acts like a stiff wall. Between these two cases, transitional 
situations occur. The intermediate case of Re = 100, Fr = 0.4 is the most interesting 
with respect to evolving flow patterns. 

In unsteady viscous flow, the centre of the vortex can be defined either as the place 
of local extremal vorticity or as the centre of the whirl, that  is, the centre of nested 
instantaneous streamlines (Lugt 1983). Whereas the vorticity field is independent of 
the choice of the reference frame, the streamlines are dependent on it. In  all of the 
following figures the instantaneous streamlines are in a reference frame fixed to  the 
undisturbed free surface and the vortex is moving relative to this frame. The centre 
of nested streamlines does not coincide with the location of extremal vorticity. In  
what follows, the phrase vortex centre refers to the place of local extremal vorticity. 
Solid equivorticity lines represent negative values, dashed lines positive values. 

Figures 4 and 5 display equivorticity lines and instantaneous streamlines, a t  four 
times and at t = 3.475 respectively, for Re = 100, Fr = 0.8 and We = 0. Near the 
centreline x = 0 the vortex pair pushes the free surface up and creates nearby a local 
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FIGURE 4. Equivorticity lines for Re = 100, Fr = 0.8, We = 0 at four different times. 
The w-contours are . . ., -3, - 1, + 1, +3, . .. . 

depression, called a ‘scar’ by Sarpkaya & Henderson (1984). The computation is 
stopped at t = 3.475 before the surface has reached its peak for numerical reasons 
because the adjustable grid is no longer adequate to handle the steep free surface 
(figure 3). The instantaneous streamlines to the right of the scar in figure 5 ( t  = 3.475) 
clearly show wave motion to the right, revealed by the non-zero angle between 
streamlines and free surface. 

It may be recalled that an approximate formula for the surface vorticity is ‘twice 
the surface curvature times tangential surface velocity ’. Applied to the present 
situation, the occurrence of positive vorticity at the scar can be explained by the 
changing sign of the surface curvature. The transport of positive vorticity into the 
fluid is then controlled by the vorticity flux a t  the surface whose magnitude is 
indicated in figure 4 by the narrowness of the equivorticity lines. 

The path of the vortex centre is depicted in figure 6. It is straight up and conforms 
with those of previous cases of high Froude numbers for inviscid fluids (Sarpkaya 
et al. 1988; Marcus 1988; Telste 1989). For comparison, the classical path of a point 
vortex with a flat surface (Lamb 1932) is given by 

x2+ y2 = 4x2y2, (15) 

with a unit distance between the two vortices far away from the origin of the 
coordinates system. (Actually, the ‘unit’ distance is only approximate, say about 
0.99, because of the choice in 0 2 of the initial depth 6 a finite distance away from the 
free surface.) 
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FIGURE 5. Streamlines for Re = 100, Fr = 0.8, We = 0 at t = 3.475. 

X 

FIGURE 6. Path of the vortex centre for Re = 100, Fr = 0.8, We = 0. For comparison, Lamb’s 
potential-flow solution for a flat surface, (15), is included. The free-surface is plotted for the final 
time t = 3.475. 

The decrease of Iwextrernurnl at the vortex centre with time is displayed in figure 7. 
From (11) it follows that the vorticity at  the vortex centre is 

The numerical computations show that up to t = 6 the vorticity extremum decreases 
according to (16) with such an accuracy that the curves for all cases considered in this 
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FIGURE 7 .  Decrease of Iuextremuml with time for all cases. 

paper and in I fall on the line shown in figure 7 .  Beyond t = 6, the vortices decay 
more rapidly. 

The effect of a low Froude number on the solutions is presented for Re = 100, 
Fr = 0.2, We = 0. Equivorticity lines and streamlines are shown in figures 8 and 9. 
The free surface rises only slightly to  form a flat mound, but quite a sharp sear is 
generated. The surface then comes to rest by means of damped oscillation when t + 
co. To the right of the scar, positive vorticity is created (figure 8, t = 3.52) that in 
time causes secondary vortex shedding from the surface into the interior of the fluid. 

The generation and shedding of a vortex behind the sear are similar to those 
behind solid bodies. First, a tongue of vorticity develops with closed streamlines, 
indicating the generation of a vortex attached to  the body or the scar. This tongue 
is stretched by the surrounding flow or the primary vortex, with the secondary 
vortex still attached to the surface by a 'feeding sheet ' of vorticity. The occurrence 
of a vorticity extremum, then signals vortex shedding from the body or the scar. 

At t = 6.52, positive vorticity with the weak secondary vortex has been wrapped 
around the primary vortex which produces this effect. The secondary vortex is so 
weak that i t  does not even cause the instantaneous streamlines of the primary vortex 
to deviate from their circular pattern (figure 9, t = 6.52). At t = 11.02 this positive 
vorticity field has disappeared (at  least for the level of vorticity contours plotted). 

The path of the primary vortex centre lies below that of Lamb's solution (figure 
10). Its form is slightly wavy because the vortex is first pushed down a little by the 
scar, rises, and then rebounds a tiny bit owing to  diffusion. 

Surface tension of the magnitude determined by We = 10 flattens the surface to 
the extent that the surface is barely deformed, and no positive vorticity is generated 
(figure 11) .  Streamlines are depicted for t = 3.52 only (figure 12). The path of the 
vortex coincides almost with that of Lamb's solution (figure 10). Rebounding does 
not occur. 
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FIGURE 9. Streamlines for Re = 100, Fr = 0.2, We = 0 at two different times. 

Fr = 0.4 is the most interesting case. The Weber numbers are chosen as We = 0, 1,  
and 10. Equivorticity lines and streamlines without surface tension are shown in 
figures 13 and 14 for eight and four different times, respectively. 

As to be expected, the free surface reaches its peak between the peaks for Fr = 0.8 
and 0.2. At the maximum elevation, the scar is deepest, associated with the 
generation of large positive vorticity ( t  = 3.52 in figures 13 and 14) which spreads to 
the right of the scar through the action of the primary vortex. A short time later the 
primary vortex rebounds and stretches the adjacent positive vorticity field to the 
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FIGURE 10. Paths of the vortex centre for Re = 100 ,  Fr = 0.2, We = 0 and 10. For comparison, 
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FIGURE 1 1 .  Equivorticity lines for Re = 100, Fr = 0.2, We = 10 at two different times. 
The w-contours are . . . , - 3, - 1 .  

point of vortex shedding (figure 13, t = 4.0). A secondary vortex, strong enough to 
exhibit a circular streamline pattern (figure 14), is created and shed. 

Both primary and secondary vortices form a system that consists of two counter- 
rotating vortices with the primary vortex stronger than the secondary one. It is well- 
known from the kinematics of two point vortices that through mutual induction the 
smaller vortex rotates around the larger one which itself moves along a smaller 
circular path (figure 13). There is a high-speed flow between the primary and 
secondary vortices indicated by the crowding of streamlines between them (figure 
14). During that time period the surface near the centreline displays damped 
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FIGURE 12. Streamlines for Re = 100, Fr = 0.2, We = 10 at t = 3.52. 

oscillation. A second but flatter scar occurs; this double scar appears to be a novel 
feature, not observed in previous studies. Meantime, a second vortex with positive 
vorticity has developed near the free surface ( t  = 5.02) and is wrapping around the 
primary vortex (t  = 6.52) (figure 13). This weaker positive vortex appears as wavy 
streamlines in figure 14 ( t  = 5.02). While the secondary vortices dwindle away, the 
primary vortex rises again and is then deflected to the right. The vortex disturbs the 
free surface, but this time only slightly because it has weakened considerably. One 
observes thus the phenomenon that the rebound of the primary vortex extends to a 
complete loop of the path (figure 15). 

The observation of a complete loop is known for a vortex pair approaching a non- 
slip wall (Orlandi 1990). This was also found earlier by Walker el at?. (1987) for the 
analogous axisymmetric problem of a vortex ring impinging on a non-slip wall. The 
explanation goes back to Harvey & Perry (1971). The approaching vortex pair or 
vortex ring induces vorticity of opposite sign along the non-slip wall. This vorticity 
is then sucked by the vortex into the fluid, a process that causes flow separation and 
subsequently the generation of a secondary vortex. 

Looping of a vortex pair has not yet been observed for a flat slip surface, either in 
numerical computations or in experiments (with almost flat surfaces). However, 
looping was detected by Bernal et al. (1989) for vortex rings which approached a slip 
surface contaminated by surfactants. These surfactants slow down the fluid motion 
along the free surface and, hence, generate vorticity in a similar fashion to that of the 
non-slip surface. For a vortex pair, Bernal et al. (1989) observed a stronger rebound 
with surfactants but not a loop. 

It becomes clear now that the loop observed in figure 15 is due to the production 
of positive vorticity behind the scar that would not have occurred at a clean, flat slip 
surface. Thus, the high curvature of the scar as a source for positive vorticity plays 
the role of non-slip at a flat surface in generating the loop. This statement is 

3 FLM 227 
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FIQURE 13. Equivorticity lines for Re = 100, Fr = 0.4, We = 0 a t  eight different times. 
The w-contours are . . . , - 3, - 1, + 1, + 3, . . . . 

supported by flows with surface tension which tends to flatten a disturbed surface 
(figure 15). 

As in the cases for Fr = 0.2 and 0.8, the maximum absolute vorticity luextremuml of 
the primary vortex decays for Fr = 0.4 according to (16), which means that the 
centre part of the vortex is not influenced by the changing flow field around it (figure 
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FIGURE 14. Streamlines for Re = 100, Fr = 0.4, We = 0 at four different times. 

FIGURE 15. Paths of the centres of the primary vortices for Re = 100, Fr = 0.4, We = 0, 1 ,  and 10 
and of the secondary vortex for Re = 100, Fr = 0.4, We = 0. For comparison, Lamb’s potential- 
flow solution for a flat surface is included. The free surface is plotted for the final time t = 17.02. 

3-2 
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FIGURE 16. Decay of secondary vortex of figure 13 with time. 

7). Beyond t = 6 the vortex decays faster. The secondary vortex decays also 
according to  (16), i.e. proportional to the inverse of time t,, in which t, is the time 
extrapolated backwards to an artificial beginning as a potential vortex (figure 16). In  
this special case, t, is t-2.8786. Then the vortex decays faster, as do the primary 
vortices in figure 7. A curve similar to that of figure 16 (equation (16)) with faster 
decay at later time was also found by Lugt & Haussling (1974) for vortices shed from 
an elliptic cylinder, vortices which were not introduced a t  t = 0 according to (11)  but 
were generated by the evolving flow field past the body. 

In  order to study the influence of surface tension, the vorticity and flow fields for 
Fr = 0.4, We = 0 and We = 1 are compared (figures 13, 14, 17, and 18). The scar a t  
t = 3.52 in figure 17 is less pronounced owing to surface tension, but enough surface 
vorticity is produced to form a weak counter-rotating secondary vortex. There is 
high-speed flow close to and in a direction tangential to  the free surface scar, 
indicated by a crowding of streamlines (figure 18, t = 3.52). The primary vortex 
moves almost parallel to the surface and pushes in front of it the secondary vortex 
(figure 17, t = 5.02) whose presence causes only a slight deviation of the circular 
streamline pattern of the primary vortex (figure 18, t = 5.02). 

The flow for Fr = 0.4, We = 10 is almost the same as that for Fr = 0.2, We = 10 
(figure 19). No surface vorticity worth mentioning is generated. 

For the above comparison, it is helpful to plot the surface vorticity and tangential 
surface velocity at various times (figures 20 and 21). The smoothing effect of surface 
tension and the diminished vorticity production are clearly visible. 

It may be noticed, when comparing figure 20 with figure 7, that the surface 
vorticity can be larger a t  times than the extremal vorticity of the original primary 
vortex which caused the surface disturbance. This is an interesting situation because 
i t  means that, in principle, secondary vortices can be created that are stronger than 
the primary vortex. 
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FIGURE 17. Equivorticity lines for Re = 100, Fr = 0.4, We = 1 at four different times. 
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FIQURE 18. Streamlines for Re = 100, Fr = 0.4, We = 1 at two different times. 

Figure 21 shows that the tangential surface velocity (vJS is considerably larger and 
always positive, i.e. in the direction of increasing x along the free surface, for the 
surface tension case We = 1 compared to that of the non-surface tension case We = 
0. In the latter case, (vJS becomes negative in the scar (figure 13, t = 4), i.e. there is 
a reversal of the flow direction along the free surface. Despite the larger tangential 
velocity of We = 1, the surface vorticity is smaller than that for We = 0 (figure 20) 
owing to the greatly diminished surface curvature. Because of this larger surface 
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FIGURE 20. Free-surface vorticity for Re = 100, Fr = 0.4, We = 0 and 1 at three different times. 

velocity, the surface tension case We = 1 required the use of a smaller physical time 
step in the numerical scheme than that for We = 0. 

Finally, the flow fields are discussed for two Reynolds numbers smaller than 100, 
that is, for Re = 50 and 10. The equivorticity lines with surface elevations for Re = 
50, Fr = 1.125 are displayed in figure 22. As in the case of Re = 100, Fr = 0.8, the 
computation is terminated at t = 4.06 for numerical reasons. At the high Froude 
number of 1.125 the surface elevations and trajectories of the vortex centre in figure 
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FIGURE 21. Tangential velocity at the free surface for Re = 100, Fr = 0.4, We = 0 and 1 at 
three different times. 

23 ( a )  are apparently not sensitive to changes of the Reynolds number, at  least from 
Re = 50 and higher, as a comparison of the Re = 50 case with that for Re = 100 and 
the inviscid-flow case reveals (figure 22 may be compared with figures 5 (a ) ,  5 ( c ) ,  and 
5 ( e )  of Sarpkaya et al. (1988). The dimensionless time T in their work is related to 
the time herein t by T = t -3 .  The same comparison can be made with the work of 
Marcus (1988) and Telste (1989). The results for Re = 10, however, presented below, 
indicate a different situation: the free surface barely rises above the undisturbed 
level owing to viscous effects. 

For Re = 50, Fr = 0.356, the influence of the Reynolds number can be felt when 
the shape of the free surface and the vortex path are compared with those of Re = 
100, Fr = 0.4.  The scar in figure 24 ( t  = 3.52) is less pronounced than the scar in figure 
13 that results in less vorticity production. Although a secondary vortex develops, 
it is not whirled around the primary vortex but pushed ahead of it parallel to the free 
surface. The path of the primary vortex does not form a loop as in the case of Re = 
100 but shows only weak rebounding in figure 23 (b ) .  Figure 24 is similar to figure 17 
for Re = 100, Fr = 0.4, We = 1 in which surface tension flattens the scar and 
diminishes the vorticity production. 

The free surface undergoes damped oscillation during the whole encounter. Its 
maximum elevation at the centreline differs only slightly from those for Re = 100 
and the inviscid case (Telste 1989). For the slightly higher Froude number of 0.5, the 
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FIGURE 22. Equivorticity lines for Re = 50, Fr = 1.125, We = 0 at three different times. 
The w-contours are ..., - 1.5, -0.9, -0.3, +0.3, ... . 

numerical results by Sarpkaya et al. (1988) showed qualitative agreement with 
experiments. 

I n  the case of Re = 10, Fr = 1.125 diffusion dominates convection so much that the 
maximum elevation y = 0.307 at t = 4.0 is small compared to all previous cases at 
this high Froude number without surface tension. The free surface returns, after the 
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FIGURE 23. Paths of the vortex centre for (a) Re = 50, Fr = 1.125, We = 0, ( b )  Re = 50, Fr = 0.356, 
We = 0, and ( c )  Re = 10, Fr = 1.125, We = 0. The curves (i) represent the paths of extremal 
vorticity and the curves (ii) the centres of nested streamlines. The free surfaces are plotted for the 
final times (a) t = 4.06, (b) t = 9.52, and (c) t = 9.04. 

X 

maximum elevation has been reached, without oscillation to the state at  rest. Figure 
25 shows equivorticity lines at  t = 4.48 and t = 9.04. 

The path of the vortex centre is plotted in figure 23(c).  Rebounding is much 
stronger than in the other cases with slightly disturbed free surfaces as, for instance, 
in the cases of Re = 50, Fr = 0.356 and Re = 100, Fr = 0.2. This comparison clearly 
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FIGURE 24. Equivorticity lines for Re = 50, Fr = 0.356, We = 0 at three different times. The 
o-contours are ..., - 1.5, -0.9, -0.3, +0.3, ... . The patterns for t = 5.02 were computed with a 
finer grid and do not show yet a pinched-off secondary vortex, while the patterns computed with 
the original grid do. 
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FIGURE 25. Equivorticity lines for Re = 10, Fr = 1.125, We = 0 at two different times. At t = 4.48, 
the w-contours are ..., -0.25, -0.15, -0.05, +0.05, ... . A t  t = 9.04, the w-contours are -0.15, 
-0.13, ... . 

provides evidence that rebounding at  a flat surface diminishes with increasing 
Reynolds number, that is, with decreasing diffusion. This confirms recent numerical 
results by Orlandi (1990). 

Additional details on the flow fields for Re = 10 and 50 can be found in I. 

This work was supported jointly by the DTRC Independent Research Program 
and by the Office of Naval Research, Fluid Dynamics Program, under Dr E. P. Rood. 
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